The equation $\sqrt {3 {x^2} + x + 5} = x - 3$ , where $x$ is real, has
no solution
exactly one solution
exactly two solution
exactly four solution
The sum of all the real roots of the equation $\left( e ^{2 x }-4\right)\left(6 e ^{2 x }-5 e ^{ x }+1\right)=0$ is
Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)
Suppose that $x$ and $y$ are positive number with $xy = \frac{1}{9};\,x\left( {y + 1} \right) = \frac{7}{9};\,y\left( {x + 1} \right) = \frac{5}{{18}}$ . The value of $(x + 1) (y + 1)$ equals
If $a+b+c=1, a b+b c+c a=2$ and $a b c=3$, then the value of $a^{4}+b^{4}+c^{4}$ is equal to $....$
The number of real solutions of the equation $x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$ is